A Clustering Based Hybrid System for Mass Spectrometry Data Analysis
نویسندگان
چکیده
Recently, much attention has been given to the mass spectrometry (MS) technology based disease classification, diagnosis, and protein-based biomarker identification. Similar to microarray based investigation, proteomic data generated by such kind of high-throughput experiments are often with high feature-to-sample ratio. Moreover, biological information and pattern are compounded with data noise, redundancy and outliers. Thus, the development of algorithms and procedures for the analysis and interpretation of such kind of data is of paramount importance. In this paper, we propose a hybrid system for analyzing such high dimensional data. The proposed method uses the k-mean clustering algorithm based feature extraction and selection procedure to bridge the filter selection and wrapper selection methods. The potential informative mass/charge (m/z) markers selected by filters are subject to the k-mean clustering algorithm for correlation and redundancy reduction, and a multi-objective Genetic Algorithm selector is then employed to identify discriminative m/z markers generated by k-mean clustering algorithm. Experimental results obtained by using the proposed method indicate that it is suitable for m/z biomarker selection and MS based sample classification.
منابع مشابه
Design a Hybrid Recommender System Solving Cold-start Problem Using Clustering and Chaotic PSO Algorithm
One of the main challenges of increasing information in the new era, is to find information of interest in the mass of data. This important matter has been considered in the design of many sites that interact with users. Recommender systems have been considered to resolve this issue and have tried to help users to achieve their desired information; however, they face limitations. One of the mos...
متن کاملA Hybrid Grey based Two Steps Clustering and Firefly Algorithm for Portfolio Selection
Considering the concept of clustering, the main idea of the present study is based on the fact that all stocks for choosing and ranking will not be necessarily in one cluster. Taking the mentioned point into account, this study aims at offering a new methodology for making decisions concerning the formation of a portfolio of stocks in the stock market. To meet this end, Multiple-Criteria Decisi...
متن کاملElectrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf
This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملMultivariate Estimation of Rock Mass Characteristics Respect to Depth Using ANFIS Based Subtractive Clustering- Khorramabad- Polezal Freeway Tunnels
Combination of Adoptive Network based Fuzzy Inference System (ANFIS) and subtractive clustering (SC) has been used for estimation of deformation modulus (Em) and rock mass strength (UCSm) considering depth of measurement. To do this, learning of the ANFIS based subtractive clustering (ANFISBSC) was performed firstly on 125 measurements of 9 variables such as rock mass strength (UCSm), deformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008